1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
elkeshillings4 edited this page 2025-04-13 01:35:29 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses support finding out to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its reinforcement learning (RL) step, which was used to fine-tune the model's actions beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually boosting both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's equipped to break down complicated inquiries and factor through them in a detailed way. This directed reasoning process permits the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation design that can be integrated into various workflows such as agents, sensible thinking and information interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, enabling effective reasoning by routing queries to the most pertinent expert "clusters." This method allows the design to focus on various problem domains while maintaining general performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient models to mimic the habits and reasoning patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent harmful content, and examine models against key security criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation boost, create a limitation boost demand and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Set up authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid damaging content, and assess models against key safety requirements. You can implement security measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections show reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.

The model detail page supplies important details about the model's capabilities, pricing structure, and execution guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for combination. The model supports various text generation tasks, including material creation, code generation, and forum.pinoo.com.tr question answering, utilizing its support discovering optimization and CoT thinking capabilities. The page likewise consists of deployment alternatives and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a variety of instances (between 1-100). 6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure advanced security and infrastructure settings, including virtual personal cloud (VPC) networking, service function approvals, and file encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may wish to evaluate these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can explore different triggers and adjust design parameters like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For example, material for inference.

This is an excellent method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The play ground provides immediate feedback, helping you understand how the model responds to various inputs and letting you fine-tune your prompts for optimum results.

You can quickly test the model in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning using a DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference parameters, and sends out a request to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical methods: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to assist you select the method that best suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design internet browser shows available models, with details like the service provider name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals key details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this design can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the model details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the model, it's recommended to examine the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the instantly created name or develop a custom-made one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of circumstances (default: 1). Selecting appropriate instance types and counts is crucial for cost and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the model.

    The deployment procedure can take numerous minutes to complete.

    When release is complete, your endpoint status will alter to InService. At this moment, the design is ready to accept reasoning requests through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments.
  5. In the Managed implementations area, locate the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct ingenious services utilizing AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the reasoning performance of big language designs. In his downtime, Vivek takes pleasure in hiking, watching films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that assist customers accelerate their AI journey and unlock organization value.